教机器遗忘或许比学习更重要:让AI健忘的三种方式
![]() |
编译:臻臻、Shan LIU、龙牧雪
大部分人不会喜欢遗忘的感觉。
回到家顺手把钥匙丢在一个角落就再也想不起来放在哪儿了,街角偶遇一个同事却怎么拍脑袋也叫不出他的名字……我们害怕遗忘,讨厌遗忘。
然而,生而为人,健忘其实是种关键能力。
对于人类而言,遗忘绝不仅仅是“想不起来”,而是一个帮助大脑吸收新信息并锻炼有效决策的积极过程。
现在,数据科学家们正在尝试应用神经科学原理来改进机器学习,并且坚信人类大脑能够解锁图灵完备的人工智能。
人脑为什么需要遗忘
我们的大脑被普遍认作为信息过滤器。先放入一大堆乱七八糟的数据,筛选有用的信息,然后清理任何不相关的细节,用以陈述故事或作出决策。清除没用的细节是为了给新数据腾出储存空间,类似在计算机上运行磁盘清理。
![]() |
对于人类来说,遗忘有两个好处:
通过减少过时信息对我们决策的影响来增强灵活性
防止过度拟合过去的特定事件和促进概括能力
为了有效地适应环境,人类需要有策略性遗忘的能力。
计算机也需要遗忘?
计算机的遗忘与人类的不同,这是人工智能面临的一大挑战。深度神经网络在完成机器学习任务方面非常成功,但它们的遗忘方式也与我们不一样。
举一个简单的例子,如果你教一个讲英语的孩子学习西班牙语,这个孩子会在学习过程中应用英语学习的技巧,比如名词、动词动态、句子建立方法等。同时他会忘记那些不相关的部分,比如口音、嘟囔、语调等。如此,这个孩子可以在策略性遗忘的同时逐渐学习和建立新的思维方式。
![]() |
虽然这还是一个新领域,最近科学家们已经在探索克服这种限制的潜在理论,并取得了长足的进步。
3个方法教AI学会遗忘
长短期记忆网络(LSTM)
LSTM是一种循环神经网络,它使用特定的学习机制来决定在任意一个节点哪些信息需要记住,哪些需要更新,哪些需要关注。[page]分页标题[/page]
LSTM工作机制如何?一个简单的解释是拿电影来做类比:假设一个计算机正在尝试通过分析先前的场景来预测电影中接下来会发生的事。一个场景是一个女人拿着一把刀,计算机会猜测她是一个厨师还是凶手呢?另一个场景中,一个女人和一个男人在金色拱门下吃寿司:计算机会猜他们是在日本还是麦当劳呢?或者其实他们是在圣路易斯?
![]() |
LSTM通过以下3步提升神经网络:
遗忘/记忆
“当场景结束,模型应该忘记当前场景的位置,所处时间,并重置任何特定场景的信息;然而,如果场景中的一个角色死亡了,机器则应该继续记住他不再活着的事实。因此,我们希望机器能学习掌握一个相互独立的遗忘/记忆机制,这样当新信息进来时,它知道什么观念该保留什么该丢弃。”
——Edwin Chen
保存
当模型看到一张新图像,它需要了解这个图像是否有什么信息值得被使用和保存。如果一个女人在某个场景中路过广告牌,机器应该记住这个广告牌还是将其视作噪声数据忽略掉呢?
划重点
我们可能需要记住电影中的这个女人是个母亲这一信息点,因为我们稍后会看见她的孩子们,但是这个信息在她不出现的场景里可能并不重要,所以在那些场景里我们不需要重点关注。同样,并非所有存储在神经网络的长期记忆中的内容都是立即相关的,所以LSTM所做的就是在安全保存所有信息备用的同时,帮助决定哪一部分在哪一时刻被重点关注。
弹性权重固化(EWC)
EWC是由谷歌旗下DeepMind的研究人员于2017年3月创建的一种算法,旨在模拟一种被称为突触整合的神经科学过程。在突触整合过程中,我们的大脑评估一项任务,计算许多用于执行任务的神经元的重要性,同时权衡哪些神经元对正确执行任务更为重要。
这些关键的神经元被编译为重要的,并且在随后的任务中相对不可能被覆盖。同样,在神经网络中,多个连接(如神经元)被用于执行任务。EWC将一些连接编译为至关重要的,从而保护他们不被覆盖/遗忘。
在下面的图表中,你可以看到研究人员将EWC应用于Atari游戏时发生了什么。蓝线表示标准的深度学习过程,红线及棕线则由EWC提供以显示改进后的结果:
![]() |
瓶颈理论由耶路撒冷希伯来大学的计算机科学家和神经科学家Naftali Tishby在2017年秋提出。这个构想是,网络摆脱了嘈杂的无关细节的输入数据,就好比用瓶颈将信息挤压,只保留与基本概念最相关的特征。
Tishby解释说,神经网络经历了两个阶段的学习——拟合与压缩。在拟合过程中,网络标记其训练数据;而在更漫长的压缩过程中,它“丢弃关于数据的信息,只跟踪最强大的特征”,也即是那些最能帮助它泛化的特征。通过这种方式,压缩成为策略性遗忘的一种方式,掌控这一瓶颈也可能成为AI研究人员用于构建未来更强大神经网络的新目标和体系的一个工具。
正如Tishby所说:“遗忘才是学习过程中最重要的一部分。”
人类大脑和遗忘的过程中,有可能藏着通往强AI的密码。但科学家们仍在上下求索。[page]分页标题[/page] 本文首发于微信公众号:大数据文摘。文章内容属作者个人观点,不代表和讯网立场。投资者据此操作,风险请自担。

- AMD助力微软Windows 11 为用户带来强大、可靠的计算能力2021-10-09 16:20
- 游戏玩家为之疯狂!Chinajoy2021 AMD展台那些火爆的瞬间2021-08-02 15:39
- 全场最佳 AMD Chinajoy2021展台圆满收官2021-08-02 15:38
- AMD 锐龙5000G系列处理器正式亮相Chinajoy20212021-08-02 11:50
- 极速制胜 制霸游戏 AMD携多款游戏神器扬威Chinajoy2021-08-02 11:44
- 央视《新闻联播》头条聚焦铁建重工,聚力攻克“卡脖子”技术难题2021-03-22 11:08
- 刚刚!我又上央视新闻联播头条了!2021-03-22 11:04
- 中国电科(3月1日-3月7日)要闻回顾 | 资讯轻阅读2021-03-22 10:47
- 我国将建第一个国家公园:为何是三江源2021-03-22 10:43
- 美国硅谷上演“大逃亡”:郊区成科技精英避难所2021-03-22 10:41

- 18:01易萃享:27 年康力匠心,铸就数智健康新标杆
- 17:54易萃享:以数智之力,让健康管理触手可及
- 17:27易萃享:不止是营养机,更是家庭健康管理中心
- 17:19易萃享:AI 赋能,解锁 “一人一案” 的营养新范式
- 17:09易萃享:1000 日夜打磨,让精准营养走进寻常家
- 19:41政产协企四方联动 | 浙江省住建厅、九牧、链筑、房企共研:好房子需配备智
- 19:40武汉智博会 | 卫浴独家!九牧携产业链伙伴智造中国“好房子”
- 19:39九牧领跑科技卫浴新赛道,“好房子” 实践响应十五五规划
- 20:40东方药林百年纳:科技赋能 开启活力健康新航程
- 20:35东方药林百年纳:四大专利加持 解锁现代健康新方案
- 20:29东方药林魔术丝:传承本草智慧 点亮现代秀发之美
- 20:18魔术丝白黑客防脱育发液:天然植萃赋能 解锁秀发焕变密码
- 20:06竹奥秘毛巾:东方药林创新竹锟科技的匠心之作
- 19:23东方药林竹奥秘:解锁竹萃能量 重塑健康生活理念
- 12:21南京市人才一期发展基金合伙企业子基金遴选结果公布
- 18:43水井坊发布2025年前三季度业绩报告
- 17:58去信任的商业文明:当算法取代权威,当信任回归众人
- 20:29助推高质量产业发展·创投实录|华青领创:敢于“掀桌”,方见新“视界”
- 12:32“第一届传媒可持续发展·ESG作品榜”正式发布 2025企业可持续发展大
- 18:28【一个世界 无限场景】泽瑞萬象元宇宙计划正式启动 & 全球首秀
- 07:45纳米晶体甲地孕酮,让肿瘤患者体重“向上”,生存“向上”
- 21:40创投集团直投企业瑞为新材获得第七批专精特新“小巨人”企业认定
- 12:19九牧智能卫浴助建中国“好房子”,杭州好房子私享会今日召开!
- 14:04金海汇成投资有限公司如何打造高效资产证券化产品
- 17:01ChainVault亮相伦敦区块链大会:引爆欧洲RWA新风口
- 17:00Auricore亮相伦敦区块链大会,定义黄金RWA全球新标准
- 17:00STC亮相伦敦区块链大会,开启绿色RWA的新篇章
- 16:59POLEX亮相伦敦区块链大会:AI驱动欧洲RWA金融新纪元
- 15:15专业筑基,体系赋能:YS(应氏)家族资产管理体系获著作权保护
- 11:34第一财经《秒懂金融》AI数智人应用案例再获奖项








