学界 | DeepMind想用IQ题测试AI的抽象思维能力,进展还不错
抽象理解能力一直是人类引以为豪的智慧来源。
阿基米德基于对物体体积的抽象理解,悟到了物体的体积与物体浮力之间的关系。这就是抽象推理的魔力。
基于神经网络的机器学习模型取得了惊人的成绩,但是测量其推理抽象概念的能力却是非常困难的。
虽然人工智能已经可以在策略游戏的对战中战胜人类,但是却在一些简单任务方面“无能为力”,特别是需要在新环境中发现并重新构建抽象概念。
举个例子,如果你只训练AI计算三角形的属性,那么,你训练的AI系统永远无法计算正方形或者其他没有训练过的形状的属性。
又比如下边这道简单的IQ测试题。
在以往解决通用学习系统努力的基础上,DeepMind最新论文提出了一种如何测量机器模型认知能力的方法,并表达了关于泛化的一些重要见解。
要构建更好、更智能的系统,使得神经网络能够处理抽象概念,需要对其进行改进。
此方法的灵感来源于IQ测试。
创建抽象推理数据集
标准的人类智商测试中,通常要求测试者通过应用他们日常经验学习的原则来解释感知上简单的视觉场景。
例如,人类测试者可能已经通过观察植物或建筑物的增长,通过在数学课上学习加法,或通过跟踪银行余额获取利息增长的情况来了解“渐进”(一些属性能够增加的概念)。
然后把这些感性认识上升到理性认识,从而对测试题进行推断预测,例如图形的数量、大小,甚至沿着序列增加颜色强度。
现在机器学习仍然无法理解一些看似简单的“日常体验”,这意味着,人类无法轻易地衡量AI将知识从现实世界转移到视觉推理测试的能力。
基于此认知,DeepMind设计一个实验,希望使人类视觉推理测试得到很好的利用。这一研究不是从日常生活到视觉推理问题(如人类测试)的知识转移,而是研究知识从一组受控的视觉推理问题转移到另一组问题。
为实现这一目标,DeepMind构建了一个用于创建矩阵问题的生成器,涉及一组抽象因子,包括“渐进”之类的关系以及“颜色”和“大小”等属性。 虽然问题生成器使用了一小组潜在因子,但它仍然会产生大量独特的问题。
接下来,DeepMind约束生成器可用的因子或组合,以便创建用于训练和测试模型的不同问题集,以度量模型可以推广到留存的测试集的程度。
例如,创建了一组谜题训练集,其中只有在应用于线条颜色时才会遇到渐进关系,而在应用于形状大小时会遇到测试集。如果模型在该测试集上表现良好,它将提供推断和应用抽象概念的能力的证据,即使在之前从未见过进展的情况下也是如此。[page]分页标题[/page]
有希望的抽象推理证据
在机器学习评估中应用的典型的泛化机制中,训练和测试数据来自于相同的基础分布,测试的所有网络都表现出良好的泛化误差,其中一些在略高于75%的情况下实现了令人印象深刻的绝对性能。性能最佳的网络明确地计算了不同图像面板之间的关系,并且并行地评估了每个潜在答案的适用性。DeepMind将此架构称为Wild RelationNetwork(WReN)。
当需要在先前看到的属性值之间使用属性值“插值”来推理,以及在不熟悉的组合中应用已知的抽象关系时,模型的泛化效果显著。然而,在“外推”机制中,同样的网络表现得糟糕得多,在这种情况下,测试集中的属性值并不与训练中看到的值处于相同的范围内。
这种事情发生在当训练集中有深颜色的物体而测试集中是浅颜色的物体的谜题中。当模型被训练来应用以前所见的关系(比如形状的数量)到一个新的属性(如大小)时,泛化性能也会更糟。
最后,当训练模型不仅预测正确的答案,而且还预测答案的“原因”(即应该考虑解决这个难题的特定关系和属性)时,DeepMind称观察到了改进的泛化性能。
有趣的是,在中性分割中(the neutral split),模型的准确性与它推断矩阵下正确关系的能力密切相关:当解释正确时,模型会选择当时正确的答案的概率为87%,但当它的解释错误时,性能下降到只有32%。这表明,当模型正确地推断出任务背后的抽象概念时,能够获得更好的性能。
更微妙的泛化方法
目前的文献关注于基于神经网络的机器学习方法的优缺点,通常是基于它们的能力或泛化的失败。DeepMind的结果表明,得出关于泛化的普遍结论可能是没有帮助的:测试的神经网络在某些泛化状态下表现得很好,而在其他状态下表现得很差。
它们的成功是由一系列因素决定的,包括所使用的模型的架构,以及模型是否被训练为其选择的答案提供可解释的“原因”。在几乎所有的情况下,当需要推断出超出其经验的输入或处理完全陌生的属性时,系统表现很差;在这个至关重要的研究领域为未来的工作创造一个清晰的重点。 本文首发于微信公众号:大数据文摘。文章内容属作者个人观点,不代表和讯网立场。投资者据此操作,风险请自担。
- AMD助力微软Windows 11 为用户带来强大、可靠的计算能力2021-10-09 16:20
- 游戏玩家为之疯狂!Chinajoy2021 AMD展台那些火爆的瞬间2021-08-02 15:39
- 全场最佳 AMD Chinajoy2021展台圆满收官2021-08-02 15:38
- AMD 锐龙5000G系列处理器正式亮相Chinajoy20212021-08-02 11:50
- 极速制胜 制霸游戏 AMD携多款游戏神器扬威Chinajoy2021-08-02 11:44
- 央视《新闻联播》头条聚焦铁建重工,聚力攻克“卡脖子”技术难题2021-03-22 11:08
- 刚刚!我又上央视新闻联播头条了!2021-03-22 11:04
- 中国电科(3月1日-3月7日)要闻回顾 | 资讯轻阅读2021-03-22 10:47
- 我国将建第一个国家公园:为何是三江源2021-03-22 10:43
- 美国硅谷上演“大逃亡”:郊区成科技精英避难所2021-03-22 10:41
- 18:23周大生经典十万份黄金好礼大放送,点燃蛇年春节喜气氛围
- 11:13JJ斗地主拒绝赌博,引领棋牌游戏新风尚
- 10:37行业唯一!海尔智家获最具投资价值奖
- 10:24周大生黄金珠宝嘉年华即将盛大开启,十万份黄金好礼贺蛇年春节
- 09:28惠达卫浴与京东深化合作,开启2025健康卫浴新生活
- 19:08预见2025:HTX的全球化蓝图与战略突破
- 18:22惠达卫浴与京东深化合作,开启2025健康卫浴新生活
- 18:08“陆地航母”上线,人类距离打飞的上班还有多久?
- 17:54亚马逊最大规模电动卡车订单落地:豪购超200辆奔驰eActros
- 15:36百利好推出全新交易产品,开拓财富新篇章
- 21:10七座商务车都有哪些?上汽大通 MAXUS G90亮点解析
- 21:05云米电器质量怎么样,云米燃气热水器AI Super2:智享未来,温暖每一
- 20:51CR450动车组样车正式发布,标志着中国高铁技术新突破
- 20:03IP+文旅还能怎么玩?酷乐潮玩全国文旅首店给出了答案
- 18:09周大生大师艺术珠宝以璀璨黄金诠释印象派艺术
- 15:58CES新物种(下):中国原创,世界领先——通用软体机器人技术赋能全球生产
- 10:38CES 2025观察:海信空调的新风,继续吹向AI风口
- 16:22周大生经典在传承中创新,精心打造东方文化精品珠宝
- 15:59智能驱动,豫见未来——“热AI在郑州·百度品牌之夜”圆满落幕
- 15:49驰援西藏,周大生捐款助力日喀则抗震救灾
- 15:21CES 2025 现场直击 | 万勋科技携通用软体机器人惊艳首秀,多元化
- 16:33CES新物种(中):类人肌体,过人能力——通用软体机器人技术,加速机器人
- 15:35百利好解锁投资新机遇,全新交易产品正式上线!
- 19:52周大生国家宝藏系列青花新品匠心传承千古瓷韵
- 14:55CES新物种(上):机器人变软——通用化、可商用的软体机器人亮相CES
- 12:28中国首家鱼子酱体验店 卡露伽鱼子酱旗舰店落户浙江衢州水亭门
- 10:38商聚荷城 合创未来 第二届贵港市荷商大会在城区胜利召开
- 17:23蛇年贺岁启新程,与周大生经典共赴宋韵风华
- 09:56燕京啤酒率先拉开春节营销大幕,官宣国民闺女关晓彤为品牌代言人
- 16:42周大生新年珠宝璀璨亮相,共度2025年的美好时光