只需看一眼,伯克利最新机器人就可以copy你的动作!
编译:halcyon、魏子敏
通过观察另一个人的做法来学习一项新技能,即模仿的能力,是人类和动物智力的关键部分。我们能让机器人做同样的事情吗?
伯克利研究中心近日po出的一个新的研究成果中,机器人也可以通过一次性观察,模仿人类的某个动作了。
让机器人具备这种“模仿”能力有什么意义呢?
伯克利称,这或许将成为我们与机器人沟通的一种新的方式。
之前,人类与机器人的沟通多基于要远程操作机器人或设计奖励函数。这种方法依赖一个成熟的感知系统,因此比较困难。而在模仿系统下,想要让机器人完成一个任务,我们只需简单地向机器人展示我们想让它们做什么就可以了。
其实,这一领域已有很多精彩的研究,比如模仿学习——机器人如何从自己的同类专家(即通过远程操作或动觉教学)中学习。
然而,基于视觉技能的模仿学习通常需要专家多次演示一项技能。
例如,使用原始像素输入访问单个固定对象,这样的任务需要多达200次演示,才能获得良好的性能。
如果演示次数太少,机器人一般很难学会。
此外,当机器人需要模仿表现出某种操作技能的人类时,这个问题变得更加具有挑战性。
首先,机器人的手臂看起来和人类的手臂有很大的不同;
第二,在人类演示和机器人演示之间建立正确的对应关系是非常难的。
只是跟踪和重新绘制运动图还不够简单:这项任务更关键地取决于这个运动如何影响世界中的物体,需要建立起一个基于交互的通信。
为了让机器人能够从一个人类的视频中模仿技能,伯克利这一研究的创新之处在于,让机器人融合以前的经验,而不是从头开始学习每一项技能。
通过结合以前的经验,机器人还应该能够快速地学习操作新对象,同时不改变域的改变,这种改变包括:提供演示的人、变化的背景场景或不同的视角。
伯克利希望通过学习从示范数据中学习来实现这两种能力:小样本模仿(few-shot imitation)和域不变性。这项技术,也被称为元学习,是我们如何让机器人具备通过观察并模仿人类的能力的关键。
那么,如何利用元学习让机器人快速适应不同的对象呢?
伯克利的方法是将元学习和模仿学习结合起来,使一次性模仿学习成为可能。其核心思想是提供一个特定任务的单一演示,即操纵一个特定对象,机器人可以快速识别任务是什么,并在不同的环境下成功地解决它。
伯克利之前一项关于一次性模仿学习的研究通过学习成千上万的演示,获得了卓越的结果,比如在块堆叠等模拟任务上。
如果想要一个物理机器人能够模仿人类并操纵各种各样的新事物,我们需要开发一个新的系统,它可以学习如何从视频演示中学习,用一个可以在现实世界中实际收集的数据集。首先,讨论通过远程操作收集的单个演示的视觉模拟方法。然后,展示如何将它扩展到从人类的视频中学习。
一次性视觉模拟学习(One-Shot Visual Imitation Learning)
为了使机器人能够从观看视频中学习,伯克利的本次研究结合了模拟学习和有效的元学习算法,也即model-agnostic meta learning(MAML)。
在这个方法中,伯克利用带有参数θ的卷积神经网络作为策略表示。从机器人相机和机器人结构(如关节角度和关节速度)的图像映射到机器人在t时刻的动作(如抓手的线速度和角速度)。[page]分页标题[/page]
以下是伯克利算法的三个主要步骤:
首先,收集一个巨大的数据集,其中包含远程操作机器人执行许多不同任务的演示,在伯克利提供的例子中,这些任务对应于操作不同的对象。在第二步中,运用MAML学习一组初始的策略参数θ,这样,在被提供了某个对象的一个演示之后,可以对那个对象运行梯度下降法找到可概括的策略参数。当使用远程操作演示时,可以通过比较策略的预测动作来计算策略更新:
由于该方法没有为元学习和优化引入任何额外的参数,结果证明它是非常数据有效的。因此,只需观看远程的机器人演示,就可以完成推放等多种控制任务:用单个演示将物体放置到新容器中。左:演示。右:学会策略。
通过域自适应元学习观察人类的一次性模仿
上述方法仍然依赖于远程操作机器人的演示而非人类的演示。为此,伯克利还在上述算法的基础上,设计了一种域自适应一次性模拟方法。
伯克利收集了远程操作机器人和人类完成的许多不同任务的演示。然后,提供人工演示来计算策略更新,并使用执行相同任务的机器人演示来评估更新的策略。该算法的图示如下:
遗憾的是,由于人工演示只是一个人执行任务的视频,它不包含专家操作,所以伯克利也提出,无法计算上面定义的策略更新。因此,其建议学习一个更新策略的损失函数,一个不需要动作标签的损失函数。
学习损失函数背后的直觉是,可以获得一个函数,该函数只使用可获得的输入、未标记的视频,但仍然可以生成用于更新策略参数的梯度,从而产生一个成功的策略。
虽然这似乎是一项不可能完成的任务,但重要的是要记住,在梯度步之后,元训练过程仍然用真正的机器人动作来管理策略。因此,学习损失的作用可能被解释为简单地指导参数更新,以修改策略,以在场景中获取正确的视觉线索,以便元训练的动作输出将产生正确的动作。用时间卷积表示学习的损失函数,它可以在视频演示中提取时间信息:
伯克利还使用在不同房间用不同的摄像机收集的人类演示来评估这种方法。机器人仍然能很好地完成这些任务。
下一步是什么?
伯克利称,既然其已经教机器人通过观看一个视频学会操纵新对象,下一步自然是进一步扩展这些方法,设置不同的任务对应于完全不同的运动和目标,比如使用各种各样的工具或玩各种各样的运动。
通过在任务的底层分配中考虑更多的多样性,我们希望这些模型能够实现泛化,允许机器人快速地为新情况制定策略。此外,在这里开发的技术并不是局限于机器人操纵甚至控制的。例如,模仿学习和元学习都被用于语言环境中,在语言和其他顺序决策环境中,学会模仿一些演示是未来工作的一个有趣的方向。 本文首发于微信公众号:大数据文摘。文章内容属作者个人观点,不代表和讯网立场。投资者据此操作,风险请自担。
- AMD助力微软Windows 11 为用户带来强大、可靠的计算能力2021-10-09 16:20
- 游戏玩家为之疯狂!Chinajoy2021 AMD展台那些火爆的瞬间2021-08-02 15:39
- 全场最佳 AMD Chinajoy2021展台圆满收官2021-08-02 15:38
- AMD 锐龙5000G系列处理器正式亮相Chinajoy20212021-08-02 11:50
- 极速制胜 制霸游戏 AMD携多款游戏神器扬威Chinajoy2021-08-02 11:44
- 央视《新闻联播》头条聚焦铁建重工,聚力攻克“卡脖子”技术难题2021-03-22 11:08
- 刚刚!我又上央视新闻联播头条了!2021-03-22 11:04
- 中国电科(3月1日-3月7日)要闻回顾 | 资讯轻阅读2021-03-22 10:47
- 我国将建第一个国家公园:为何是三江源2021-03-22 10:43
- 美国硅谷上演“大逃亡”:郊区成科技精英避难所2021-03-22 10:41
- 18:23周大生经典十万份黄金好礼大放送,点燃蛇年春节喜气氛围
- 11:13JJ斗地主拒绝赌博,引领棋牌游戏新风尚
- 10:37行业唯一!海尔智家获最具投资价值奖
- 10:24周大生黄金珠宝嘉年华即将盛大开启,十万份黄金好礼贺蛇年春节
- 09:28惠达卫浴与京东深化合作,开启2025健康卫浴新生活
- 19:08预见2025:HTX的全球化蓝图与战略突破
- 18:22惠达卫浴与京东深化合作,开启2025健康卫浴新生活
- 18:08“陆地航母”上线,人类距离打飞的上班还有多久?
- 17:54亚马逊最大规模电动卡车订单落地:豪购超200辆奔驰eActros
- 15:36百利好推出全新交易产品,开拓财富新篇章
- 21:10七座商务车都有哪些?上汽大通 MAXUS G90亮点解析
- 21:05云米电器质量怎么样,云米燃气热水器AI Super2:智享未来,温暖每一
- 20:51CR450动车组样车正式发布,标志着中国高铁技术新突破
- 20:03IP+文旅还能怎么玩?酷乐潮玩全国文旅首店给出了答案
- 18:09周大生大师艺术珠宝以璀璨黄金诠释印象派艺术
- 15:58CES新物种(下):中国原创,世界领先——通用软体机器人技术赋能全球生产
- 10:38CES 2025观察:海信空调的新风,继续吹向AI风口
- 16:22周大生经典在传承中创新,精心打造东方文化精品珠宝
- 15:59智能驱动,豫见未来——“热AI在郑州·百度品牌之夜”圆满落幕
- 15:49驰援西藏,周大生捐款助力日喀则抗震救灾
- 15:21CES 2025 现场直击 | 万勋科技携通用软体机器人惊艳首秀,多元化
- 16:33CES新物种(中):类人肌体,过人能力——通用软体机器人技术,加速机器人
- 15:35百利好解锁投资新机遇,全新交易产品正式上线!
- 19:52周大生国家宝藏系列青花新品匠心传承千古瓷韵
- 14:55CES新物种(上):机器人变软——通用化、可商用的软体机器人亮相CES
- 12:28中国首家鱼子酱体验店 卡露伽鱼子酱旗舰店落户浙江衢州水亭门
- 10:38商聚荷城 合创未来 第二届贵港市荷商大会在城区胜利召开
- 17:23蛇年贺岁启新程,与周大生经典共赴宋韵风华
- 09:56燕京啤酒率先拉开春节营销大幕,官宣国民闺女关晓彤为品牌代言人
- 16:42周大生新年珠宝璀璨亮相,共度2025年的美好时光