手把手 | 教你用几行Python和消费数据做客户细分

细分客户群是向客户提供个性化体验的关键。它可以提供关于客户行为、习惯与偏好的相关信息,帮助企业提供量身定制的营销活动从而改善客户体验。在业界人们往往把他吹嘘成提高收入的万能药,但实际上这个操作并不复杂,本文就将带你用简单的代码实现这一项目。

客户细分
我们需要创建什么?
通过使用消费交易数据,我们将会通过创建一个2 x 2的有价值属性的矩阵来得到4个客户群。每一个客户群将与其他群体有两大区别,即当前客户价值和潜在客户价值。
我们将使用什么技术?
我们将使用RFM模型从消费交易数据中创建所需变量。RFM模型代表:
最近消费(Recency):他们最近一次消费是什么时候?
消费频率(Frequency):他们多久消费一次、一次消费多久?
消费金额(Monetary):他们消费了多少?
该模型通常被用于在三个属性交叉处寻找高价值客户。但在本例中,我们将仅适用R(最近消费)与M(消费金额)来创建二维矩阵。

RFM模型
我们使用什么数据?
我们将使用Tableau提供的消费数据样本——它也被称为“Global Superstore”。它通常被用于预测与时间序列分析。该数据集包含超过1500位不同客户4年的消费数据。既然我们做的是行为细分而非人口细分,我们将通过仅选择B2C领域的消费者以及美国区域的消费数据来去除潜在的人口偏差。
我们采取什么方法?
第0步:导入、筛选、清理、合并消费者层级数据。
第1步:为每一位消费者创建RFM变量。
第2步:为实现自动细分,我们将使用R与M变量的80%分位数;我们其实还可以用k均值聚类(K-mean Clustering)或者利用商业背景知识来进行群体区分——比如,全球超市企业用户将活跃客户定义为最近一次订单在100天内的客户。
第3步:计算RM分数,并对客户进行排序。
第4步:可视化价值矩阵,并对关键指标进行进一步分析。[page]分页标题#e#
Python实现:
第0步:导入、筛选、清理、合并消费者层级数据。
import matplotlib as plt
import numpy as np
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
url = 'https://github.com/tristanga/Data-Analysis/raw/master/Global%20Superstore.xls'
df = pd.read_excel(url)
df = df[(df.Segment == 'Consumer') & (df.Country == 'United States')]
df.head()
第1步:为每一位消费者创建RFM变量。
df_RFM = df.groupby('Customer ID').agg({'Order Date': lambda y: (df['Order Date'].max().date() - y.max().date()).days,
'Order ID': lambda y: len(y.unique()),
'Sales': lambda y: round(y.sum(),2)})
df_RFM.columns = ['Recency', 'Frequency', 'Monetary']
df_RFM = df_RFM.sort_values('Monetary', ascending=False)
df_RFM.head()

第2步:使用R与M变量的80%分位数实现自动细分。
# We will use the 80% quantile for each feature
quantiles = df_RFM.quantile(q=[0.8])
print(quantiles)
df_RFM['R']=np.where(df_RFM['Recency']<=int(quantiles.Recency.values), 2, 1)
df_RFM['F']=np.where(df_RFM['Frequency']>=int(quantiles.Frequency.values), 2, 1)
df_RFM['M']=np.where(df_RFM['Monetary']>=int(quantiles.Monetary.values), 2, 1)
df_RFM.head()

第3步:计算RM分数,并对客户进行排序。
# To do the 2 x 2 matrix we will only use Recency & Monetary
df_RFM['RMScore'] = df_RFM.M.map(str)+df_RFM.R.map(str)
df_RFM = df_RFM.reset_index()
df_RFM_SUM = df_RFM.groupby('RMScore').agg({'Customer ID': lambda y: len(y.unique()),
'Frequency': lambda y: round(y.mean(),0),
'Recency': lambda y: round(y.mean(),0),
'R': lambda y: round(y.mean(),0),
'M': lambda y: round(y.mean(),0),
'Monetary': lambda y: round(y.mean(),0)})
df_RFM_SUM = df_RFM_SUM.sort_values('RMScore', ascending=False)
df_RFM_SUM.head()
[page]分页标题#e#
第4步:可视化价值矩阵,并对关键指标进行进一步分析。
# 1) Average Monetary Matrix
df_RFM_M = df_RFM_SUM.pivot(index='M', columns='R', values='Monetary')
df_RFM_M= df_RFM_M.reset_index().sort_values(['M'], ascending = False).set_index(['M'])
df_RFM_M
# 2) Number of Customer Matrix
df_RFM_C = df_RFM_SUM.pivot(index='M', columns='R', values='Customer ID')
df_RFM_C= df_RFM_C.reset_index().sort_values(['M'], ascending = False).set_index(['M'])
df_RFM_C
# 3) Recency Matrix


最终矩阵(左上:流失客户;右上:明星客户;左下:次要客户;右下:新客户)
一些简单的销售与营销策略的启发性实例
“流失客户”分类中的客户人数不是很多,并且从他们身上得到的的平均收入高于“明星客户”分类。既然人数不多,从客户层面与业务部门合作对这些客户进行分析研究并制定一个留住他们的策略应该不难:给他们打电话或者直接见面,说不定就可以把他们挪到“明星客户”分类(例如,高参与度客户)。
“次要客户”分类的平均最近消费时间非常久远(超过1年,而参与度较高的客户平均来说该数据只有60至70天)。发起一些发放优惠券一类的营销活动可能能够带来新的消费,并帮助把该类客户挪至“新客户”分类(例如,高参与度客户)。

简单策略实例(上:打电话;下:电邮营销)
在Github上可以找到本Jupyter Notebook
https://github.com/tristanga/Data-Analysis/blob/master/Notebooks/Automatic Customer Segmentation with RFM %28Python%29.ipynb
相关报道:
https://towardsdatascience.com/how-to-automatically-segment-customers-using-purchase-data-and-a-few-lines-of-python-36939fb587a4
本文首发于微信公众号:大数据文摘。文章内容属作者个人观点,不代表和讯网立场。投资者据此操作,风险请自担。[page]分页标题[/page]

- AMD助力微软Windows 11 为用户带来强大、可靠的计算能力2021-10-09 16:20
- 游戏玩家为之疯狂!Chinajoy2021 AMD展台那些火爆的瞬间2021-08-02 15:39
- 全场最佳 AMD Chinajoy2021展台圆满收官2021-08-02 15:38
- AMD 锐龙5000G系列处理器正式亮相Chinajoy20212021-08-02 11:50
- 极速制胜 制霸游戏 AMD携多款游戏神器扬威Chinajoy2021-08-02 11:44
- 央视《新闻联播》头条聚焦铁建重工,聚力攻克“卡脖子”技术难题2021-03-22 11:08
- 刚刚!我又上央视新闻联播头条了!2021-03-22 11:04
- 中国电科(3月1日-3月7日)要闻回顾 | 资讯轻阅读2021-03-22 10:47
- 我国将建第一个国家公园:为何是三江源2021-03-22 10:43
- 美国硅谷上演“大逃亡”:郊区成科技精英避难所2021-03-22 10:41

- 20:29助推高质量产业发展·创投实录|华青领创:敢于“掀桌”,方见新“视界”
- 12:32“第一届传媒可持续发展·ESG作品榜”正式发布 2025企业可持续发展大
- 18:28【一个世界 无限场景】泽瑞萬象元宇宙计划正式启动 & 全球首秀
- 07:45纳米晶体甲地孕酮,让肿瘤患者体重“向上”,生存“向上”
- 21:40创投集团直投企业瑞为新材获得第七批专精特新“小巨人”企业认定
- 12:19九牧智能卫浴助建中国“好房子”,杭州好房子私享会今日召开!
- 14:04金海汇成投资有限公司如何打造高效资产证券化产品
- 17:01ChainVault亮相伦敦区块链大会:引爆欧洲RWA新风口
- 17:00Auricore亮相伦敦区块链大会,定义黄金RWA全球新标准
- 17:00STC亮相伦敦区块链大会,开启绿色RWA的新篇章
- 16:59POLEX亮相伦敦区块链大会:AI驱动欧洲RWA金融新纪元
- 15:15专业筑基,体系赋能:YS(应氏)家族资产管理体系获著作权保护
- 11:34第一财经《秒懂金融》AI数智人应用案例再获奖项
- 20:38从专场招聘到长效生态,京东与黄河交通学院共筑产教融合新高地
- 14:09四川:投资消费双轮驱动,“十四五”扩大内需成果丰硕
- 10:262025第十八届金投赏商业创意奖获奖全榜单官宣
- 13:39百利好:白银风口下,投资的机会与风险在哪?
- 16:01全球变局下的中国青年科技创新 | 两说
- 10:52创投集团直投企业天晴空天完成超亿元A轮融资
- 09:38金海汇成投资有限公司财富增长密钥
- 10:54SYN VISION韩国发布会成功举办:开启短剧RWA财富新篇
- 13:03运鸿集团旗下【世界金融资产交易中心】获两项高含金量许可证
- 15:18创投集团直投企业典格通信完成超亿元融资
- 14:34CSCO肿瘤营养治疗专场圆满召开,纳米甲地孕酮为肿瘤患者治疗提供有力支持
- 10:17创投集团合作子基金投资企业摩漾生物完成新一轮融资
- 16:13Shokz韶音携手UTMB:以开放之声,守护山野间的奔跑
- 13:17聚力数据与低空新赛道,京东赋能千行百业新未来
- 11:59南京市航空航天母基金发布子基金遴选结果公示
- 16:44新韩潮中国行启幕,天猫国际携手韩国新锐品牌共创时尚新篇章
- 17:04与爱同行,汇梦成长!WeTrade助力云南学子逐梦未来



